Precept 3

Main topic:
- Cyclic redundancy check (CRC)

Breakout rooms:

- Reminder: participation is part of your grade
- What types of errors can be detected?

- Is there a pattern in how errors are detected?

Cyclic redundancy check (CRC)

« Most popular method error detecting code at L2
— Found in Ethernet, Wi-Fi, token ring, many many others

« Often implemented in hardware at the link layer

* Represent k-bit messages as degree k- 1
polynomials

— Each coefficient in the polynomial is either zero

orone, e.g.. , _epits of message

1 0 1 1 1 0

Mx)=1x°+0x*+ 13+ 1x°+ 1x+ 0

Modulo-2 Arithmetic

e Addition and subtraction are both exclusive-or
without carry or borrow

Multiplication example: Division example:

1101 1101

110 110%2%110

0000 111
11010 110
110100 8%%
101110 “110

110

CRC at the sender

* M(x) is our message of length k 1011
1

—e.g: MxX)=x+x3+x?+x (k=06)

1
0

« Sender and receiver agree on a generafor polynomial
G(x) of degree g — 1 (i.e., g bits)

—eg.. GXx)=x>+1 (g=4)

1. Calculate padded message T(x) = M(x)-x9~
— I.e., right-pad with g — 1 zeroes
—e.g.: TX)=MX)x>=x%+x° + x° + x*
1 011 0O

10 [To]

CRC at the sender

2. Divide padded message 7(x) by generator G(x)
— The remainder R(x) is the CRC:

101011
1001]

—
(=

- | -
oo I0|O
MR (e PR M | PN
COIOCOI0O |=|=—
IR I TN (. TRV I TN
D [O= [Om [OD
OO0 IC0O0I00
Y Y Y,
Y V..

R(x)=x+1

CRC at the sender

3. The sender transmits codeword C(x) = T(x) + R(x)

— I.e., the sender transmits the original message with
the CRC bits appended to the end

X+ X+ x+
1 01

1

1 1

— Continuing our example, C(x) = x® + x°
0
1

ol +

Properties of CRC codewords

« Remember: Remainder [T(x)/G(x)] = R(x)
« What happens when we divide C(x) / G(x)?
* C(x) = T(x) + R(x) so remainder is

— Remainder [T(x)/G(x)] = R(x), plus

— Remainder [R(x)/G(x)] = R(x)

— Recall, addition is exclusive-or operation, so:

e Remainder [C(x)/G(x)]= R(x)+ R(x)=0

Detecting errors at the receiver

* Divide received message C'(x) by generator G(x)
— If no errors occur, remainder will be zero

101 011

10] 011

10
10

—

1
0

0101
0000

—_—

010
001

011 0
0000
0
0

—_—

1
1
00
00

1
0

—_—

1
1

000 [noerror detected

Detecting errors at the receiver

* Divide received message C'(x) by generator G(x)
— If errors occur, remainder may be non-zero

101 011

01

1111 011
001

— —

0101
0000

_—

011
001

[JS.N

010 0
0000

O

—_—

001
0 01
0 001 OO error detected

Detecting errors at the receiver

* Divide received message C'(x) by generator G(x)
— If errors occur, remainder may be non-zero

101011

[[fo1111010
1001

——————————————————————————

— b

0 000 O undetected error!

Detecting errors with the CRC

« The error polynomial E(x) = C(x) + C'(x) is the
difference between the transmitted and received
codeword

— E(x) tells us which bits the channel flipped

* We can write the received message C'(x) in terms of
C(x) and E(x): C'(x) = C(x) + E(x), so:
— Remainder [C'(x) / G(x)] = Remainder [E(x) / G(x)]

 When does an error go undetected?
— When Remainder [E(x)/ G(x)]=0

11

Detecting single-bit errors w/CRC

* Suppose a single-bit error in bit-position 1. E(x) = x'
— Choose G(x) with = 2 non-zero terms: x9~' and 1

— Remainder [x'/ (x97+ -+ 1)]#0, e.g.:

1

EXXXl[co1000

* Therefore a CRC with this choice of G(x) always
detects single-bit errors in the received message

12

Error detecting code: CRC

* Far less overhead than error correcting codes

— Typically 16 to 32 bits on a 1,500 byte (12 Kbit)
frame

* Error detecting properties are more complicated

— But in practice, “missed” bit errors are exceedingly
rare

13

Breakout rooms

« What types of errors can be detected?
* |s there a pattern in how errors are detected?

« Extra time: Can you provide an example of an error
detection?

Error detecting properties of the
CRC

* The CRC will detect:
v All single-bit errors
* Provided G(x) has two non-zero terms

Error detecting properties of the
CRC

* The CRC will detect:
v All single-bit errors
* Provided G(x) has two non-zero terms

— All burst errors of length < g -1
* Provided G(x) begins with x9~! and ends with 1

« Similar argument to previous property
— All double-bit errors
« With conditions on the frame length and choice of
G(x)
— Any odd number of errors

* Provided G(x) contains an even number of
non-zero coefficients
 Pattern: errors that manifest as remainders are detected

