Precept 3

Main topic:

- Cyclic redundancy check (CRC)

Breakout rooms:

- Reminder: participation is part of your grade
- What types of errors can be detected?
- Is there a pattern in how errors are detected?

Cyclic redundancy check (CRC)

- Most popular method error detecting code at L2 - Found in Ethernet, Wi-Fi, token ring, many many others
- Often implemented in hardware at the link layer
- Represent k-bit messages as degree k 1 polynomials
 - Each coefficient in the polynomial is either zero or one, e.g.:

k = 6 bits of message

 $M(x) = 1x^5 + 0x^4 + 1x^3 + 1x^2 + 1x + 0$

Modulo-2 Arithmetic

 Addition and subtraction are both exclusive-or without carry or borrow

Multiplication example:	Division example:
1101	1101
<u> 110 </u>	$\begin{array}{c} 110 101110 \\ 110 1 \\ \end{array}$
0000	
11010	<u>110</u>
<u>110100</u>	
101110	<u>000</u> 110

110

CRC at the sender

- M(x) is our message of length k 1 0 1 1 - e.g.: $M(x) = x^5 + x^3 + x^2 + x$ (k = 6) 1 0
- Sender and receiver agree on a *generator* polynomial *G(x)* of degree *g* 1 (*i.e.*, *g* bits)
 e.g.: G(x) = x³ + 1 (*g* = 4) 1
- 1. Calculate padded message $T(x) = M(x) \cdot x^{g-1}$ - *i.e.*, right-pad with g - 1 zeroes - *e.g.:* $T(x) = M(x) \cdot x^3 = x^8 + x^6 + x^5 + x^4$ 1 0 1 1 0 0 1 0 0

CRC at the sender

Divide padded message T(x) by generator G(x)
 The remainder R(x) is the CRC:

101011

R(x) = x + 1

CRC at the sender

- 3. The sender transmits codeword C(x) = T(x) + R(x)
 - *i.e.*, the sender transmits the original message with the CRC bits appended to the end
 - Continuing our example, $C(x) = x^8 + x^6 + x^5 + x^4 + x + 1$

Properties of CRC codewords

- Remember: **Remainder** [*T*(*x*)/*G*(*x*)] = *R*(*x*)
- What happens when we divide C(x) / G(x)?
- C(x) = T(x) + R(x) so remainder is
 - Remainder [T(x)/G(x)] = R(x), plus
 - Remainder [R(x)/G(x)] = R(x)
 - Recall, addition is exclusive-or operation, so:
 - Remainder [C(x)/G(x)] = R(x) + R(x) = 0

Detecting errors at the receiver

- Divide received message C'(x) by generator G(x)
 - If no errors occur, remainder will be zero

101011

Detecting errors at the receiver

- Divide received message C'(x) by generator G(x)
 - If errors occur, remainder may be non-zero

101011

Detecting errors at the receiver

Divide received message C'(x) by generator G(x)
 If errors occur, remainder may be non-zero

Detecting errors with the CRC

- The error polynomial E(x) = C(x) + C'(x) is the difference between the transmitted and received codeword
 - -E(x) tells us which bits the channel flipped
- We can write the received message C'(x) in terms of C(x) and E(x): C'(x) = C(x) + E(x), so:
 Remainder [C'(x) / G(x)] = Remainder [E(x) / G(x)]
- When does an error go undetected?
 When Remainder [E(x) / G(x)] = 0

Detecting single-bit errors w/CRC

- Suppose a single-bit error in bit-position i: E(x) = xⁱ
 - Choose G(x) with ≥ 2 non-zero terms: x^{g-1} and 1
- Therefore a CRC with this choice of G(x) always detects single-bit errors in the received message

Error detecting code: CRC

- Far less overhead than error correcting codes

 Typically 16 to 32 bits on a 1,500 byte (12 Kbit) frame
- Error detecting properties are more complicated
 - But in practice, "missed" bit errors are exceedingly rare

Breakout rooms

- What types of errors can be detected?
- Is there a pattern in how errors are detected?
- Extra time: Can you provide an example of an error detection?

Error detecting properties of the CRC

- The CRC will detect:
 - All single-bit errors
 - Provided G(x) has two non-zero terms

Error detecting properties of the CRC

- The CRC will detect:
 - All single-bit errors
 - Provided G(x) has two non-zero terms
 - All burst errors of length ≤ g 1
 - Provided G(x) begins with x^{g-1} and ends with 1
 - Similar argument to previous property
 - All double-bit errors
 - With conditions on the frame length and choice of *G*(*x*)
 - Any odd number of errors
 - Provided G(x) contains an even number of non-zero coefficients
- Pattern: errors that manifest as remainders are detected